Unsplashed background img 1


关于我

张林峰,上海交通大学人工智能学院助理教授,博清华大学交叉信息研究院,曾获世界人工智能大会云帆奖(20人)、微软学者奖学金(亚洲12人),北京市优秀毕业生,清华大学优秀博士论文,并担任ACL、NeurIPS、ICLR等会议的领域主席。他以(共同)第一作者、通讯作者发表在CCF-A类与CAAI-A类等高水平会议期刊上发表论文40篇,被引用超3000次。他的研究成果和工作经历被人民日报、中国青年报、青春上海(上海共青团)、青春北京(北京共青团)等官方媒体专题报导,相关新闻全网浏览超过一亿次。

当前,实验室正在招收博后、本科或研究生的研究助理以及2026/2027级的学生。如果你有兴趣,请发邮件联系我。

学术服务

在以下学术会议和期刊担任审稿人: NeurIPS, ICML, ICLR, CVPR, ECCV, ICCV, AAAI, IJCAI, AISTATS, IEEE TPAMI, IEEE TCSVT, IEEE TIP, IEEE TMI, IJCV, Pattern Recognition, TACO, Scientific Reports and others.

在以下学术会议和期刊担任领域主席或客座编辑: NeurIPS2025, IJCNN2025, Big Data and Cognitive Computing, ACL2025, EMNLP2025, ICLR2026.

研究方向
高效大模型

当前的生成式大模型有着百亿量级的参数,导致极高的训练和推理成本。通过研究面向生成式大模型的压缩加速方法,我们可以降低大模型的部署成本,使大模型更好地在现实世界中得到应用。

高效多模态大模型

多模态大模型融合了文本、图像、音频和视频数据。我们研究高效处理和生成多模态内容的方法,在降低计算成本的同时保持高质量性能。

高效数据利用

当前的人工智能模型需要在极大量的数据基础上进行训练,这严重提高了大模型的训练成本。如何更加高效地利用数据,更加科学地对数据进行清洗和合成,是通往数据高效人工智能的关键。

高效多模态生成

我们研究轻量高效的AIGC模型(扩散模型等),用于文生图、文生视频等多模态生成任务,实现高质量内容生成的同时降低计算成本,推动AIGC产业落地。

基座模型

研究面向科学研究和工业应用的大模型与多模态大模型的预训练、后训练、数据构建、评测构建。



近期新闻

论文中稿趋势
论文会议分布
  •   • 12 / 2025:   实验室2026届招生工作结束,欢迎邹暢、留嘉城、魏清研、陈爽同学加入EPIC Lab
  •   • 10 / 2025:   实验室3篇文章被NeurIPS2025会议接收,恭喜!
  •   • 10 / 2025:   实验室7篇文章被AAAI2025会议接收,恭喜!
  •   • 8 / 2025:   实验室2篇文章被ACM MM2025会议接收,恭喜!
  •   • 6 / 2025:   实验室5篇文章被ICCV2025接收,恭喜!
  •   • 6 / 2025:   实验室博士生王少博获得"2025年中国电子学会-腾讯混元博士激励"(全国28名),恭喜!
  •   • 5 / 2025:   实验室4篇文章被ACL2025接收,恭喜!
  •   • 3 / 2025:   实验室4篇文章被CVPR2025,其中一篇收获满分,恭喜!
    •   • 1 / 2025:   实验室3篇文章被ICLR2025录用,一篇被选为Oral,恭喜!
      •   • 12 / 2024:   实验室1篇文章被AAAI2025录用,恭喜!
      •   • 12 / 2024:   张林峰的相关信息由澎湃新闻报导,点击量过亿,登录微博热搜第一,知乎热搜第一,由人民日报等媒体报导。
      •   • 09 / 2024:   实验室2025届研究生招生工作结束,欢迎温子辰,李学林,闫泽轩同学加入EPIC Lab。
      •   • 08 / 2024:   在胡旭明教授的邀请下,张林峰赴香港科技大学(广州)兼任访问助理教授。
      •   • 06 / 2024:   张林峰在清华大学交叉信息研究院获得工科博士学位,同时获北京市优秀毕业生,清华大学优秀博士论文,清华大学启航奖金奖,交叉信息研究院优秀毕业生,并作为学院代表在参与清华大学毕业生座谈会,在毕业典礼上发言。
主要成员

张林峰
研究方向:高效AI模型与数据利用

张林峰在东北大学获得学士学位,随后在清华大学获得博士学位。目前,他在上海交通大学领导高效精准智能计算(EPIC)实验室。

王少博
研究方向:高效数据中心AI
联系方式:shaobowang1009@sjtu.edu.cn

王少博是上海交通大学人工智能研究院EPIC实验室2024级博士研究生。他在高效AI、可解释AI和深度学习理论方面有扎实的背景,主要研究数据合成和数据缩减。

实习经历:阿里Qwen

高奕丰
研究方向:高效大语言模型
联系方式:yifenggao.cn@gmail.com

高奕丰是上海交通大学EPIC实验室的硕士研究生。他的研究兴趣主要是通过算法和计算协同设计开发高效、可靠和强大的人工智能。目前,他专注于大语言模型多步推理的高效推理及其可信度研究。

温子辰
研究方向:高效多模态大语言模型
联系方式:Zichen.Wen@outlook.com

温子辰是上海交通大学EPIC实验室的博士研究生,师从张林峰教授。他在中国电子科技大学获得计算机科学学士学位。在本科期间,他在AAAI、ACM MM等知名AI会议上发表了多篇研究论文。他的研究兴趣包括高效多模态大模型和可信AI,专注于提升人工智能系统的效率、可靠性和伦理方面。

实习经历:Kimi,上海AI Lab

李学林
研究方向:高效大语言模型
联系方式:lxl.curiosity@gmail.com

李学林于2025年在EPIC实验室开始攻读博士学位。他预计将在中国电子科技大学获得学士学位,在软件工程学院的所有课程中取得了4.0/4.0的完美GPA。在本科期间,他获得了包括国家奖学金在内的多项奖项。他的研究兴趣主要是开发可信多模态大语言模型的高效推理范式。

实习经历:蚂蚁

闫泽轩
研究方向:高效多模态与AIGC模型
联系方式:yzx_ustc@mail.ustc.edu.cn

闫泽轩于2025年秋季加入上海交通大学人工智能学院张林峰研究组的EPIC实验室。他的研究兴趣包括多模态模型、AIGC和扩散模型加速。

实习经历:小红书,阿里

邹暢
研究方向:高效图像与视频
联系方式:https://github.com/Shenyi-Z/ToCa

邹暢目前是中国电子科技大学英才学院的本科生,预计2026年完成学士学位。他来自四川成都,但尽管家乡以辣闻名,他却不吃辣。他的主要研究方向是AIGC的高效加速,特别是扩散模型,并且在数学和物理方面有扎实的基础。2024年,他开始在EPIC实验室实习,在导师张林峰的指导下,参与了ICLR和CVPR的论文投稿工作。

实习经历:腾讯混元(青云计划)

刘旭洋
研究方向:多模态大语言模型的词元级加速
联系方式:https://xuyang-liu16.github.io/

刘旭洋目前在四川大学电子信息学院攻读硕士学位。他同时也是淘宝天猫集团的研究实习生,专注于高效多模态大语言模型。2024年,他加入EPIC实验室成为研究实习生,在张林峰教授的指导下,参与了词元级模型压缩综合资源库的开发。他的研究兴趣包括高效AI,涵盖判别、自适应、重建和生成等领域。

实习经历:淘宝、蚂蚁、Oppo

魏清研
研究方向:高效深度语言模型和AIGC模型
联系方式:florawei0506@gmail.com

魏清研是EPIC实验室的新成员,专注于高效深度学习语言模型和AIGC模型的研究。她的研究兴趣包括为各种应用开发轻量级和高性能的AI系统。

实习经历:腾讯

留嘉城
研究方向:高效扩散模型 · 交互式世界模型 · 长视频推理
联系方式:ljc.mytcl@gmail.com · https://tammytcl.github.io/Liu_Homepage/

留嘉城是山东大学的本科生,将于2026年开始在上海交通大学攻读博士学位。他将加入EPIC实验室,专注于高效生成模型的研究。他的研究主要集中在两个协同领域:高效扩散模型,旨在优化推理并降低计算成本;以及世界模型,特别针对交互式视频生成和长时推理。他致力于构建更快、能够生成可控的扩展视觉环境的模型。在"简洁与深度"的理念指导下,他偏爱优雅、逻辑连贯的解决方案,并追求安静而强大的想法。

实习经历:腾讯(青云计划)

陈爽
研究方向:高效多模态大语言模型
联系方式:Charles-2022@sjtu.edu.cn

陈爽是2026级硕士研究生。他的研究兴趣聚焦于多模态大语言模型的推理加速,尤其关注如何在保持模型性能的前提下提升效率。他致力于探索模型压缩、词元剪枝和优化推理流水线等技术,以实现多模态系统的可扩展与实用部署。

王一宇
研究方向:精准高效的长视频理解
联系方式:ustywan8@ljmu.ac.uk

王一宇将于2026年加入EPIC实验室,在张林峰教授指导下攻读博士学位。他当前的研究聚焦于多模态大模型、视频理解与流式视频智能体,旨在提升大模型在长视频与实时视频场景中的推理能力。

吕原汇一
研究方向:理解生成统一模型 · 多模态生成
联系方式:ryan.lyu.mail@gmail.com · https://qc-ly.github.io/

吕原汇一是香港科技大学(广州)人工智能专业博士生。他此前在东北大学获得人工智能学士学位,目前研究方向包括理解生成统一模型与多模态生成。

程泽港
研究方向:大模型加速 · 强化学习
联系方式:chengzegang@gmail.com · https://github.com/chengzegang

程泽港是香港科技大学(广州)2026级博士研究生,作为联培学生加入EPIC Lab。他此前在纽约大学获得计算机科学硕士学位,当前研究方向包括高效生成模型与大模型强化学习。

杨奕存
研究方向:扩散大语言模型训练与推理 · 数据集蒸馏
联系方式:yangyicun187@gmail.com · Google Scholar

杨奕存目前是哈尔滨工业大学软件工程专业大四学生,将于2026年秋季起在EPIC Lab攻读博士学位。当前研究方向包括扩散语言模型的预训练扩展与推理加速。

实习经历:蚂蚁

金湘祺
研究方向:高效大语言模型 · 强化学习 · LLM智能体
联系方式:xiangqijin@outlook.com

金湘祺是电子科技大学信息与软件工程学院2022级本科生,将于2026年秋季起在EPIC Lab攻读博士学位。他目前主要研究高效大语言模型,并积极探索大模型强化学习与智能体方向。

冯亮
研究方向:大模型数据合成 · 高效生成式AI · 科学智能
联系方式:英文主页 · 中文主页

冯亮的长期研究兴趣是“智能如何增长、扩展,并在真实世界的复杂环境下得以精准校准?”他目前专注于使用Agent合成数据,提升大语言模型在科学领域的表现,并构建科学所需的高质量基准(Benchmark)。他认为合成数据是LLM实现自我学习和无限增长的关键,而Benchmark既是校准智能的标尺,也是强化学习中的终极Reward。

实习经历:阿里 × 上交大 · 字节跳动

已发表文献

WaveEX: Accelerating Flow Matching-based Speech Generation via Wavelet-guided Extrapolation
Xiaoqian Liu, Xiyan Gui, Zhengkun Ge, Yuan Ge, Chang Zou, Jiacheng Liu, Zhikang Niu, Qixi Zheng, Chen Xu, Xie Chen, Tong Xiao, JingBo Zhu, Linfeng Zhang
The 40th Annual AAAI Conference on Artificial Intelligence (AAAI2026, CCF-A)
paper

Forecast then Calibrate: Feature Caching as ODE for Efficient Diffusion Transformers
Shikang Zheng, Liang Feng, Xinyu Wang, Qinming Zhou, Peiliang Cai, Chang Zou, Jiacheng Liu, Yuqi Lin, Junjie Chen, Yue Ma, Linfeng Zhang
The 40th Annual AAAI Conference on Artificial Intelligence (AAAI2026, CCF-A)
paper

SageLM: A Multi-aspect and Explainable Large Language Model for Speech Judgement
Yuan Ge, Junxiang Zhang, Xiaoqian Liu, Bei Li, Xiangnan Ma, Chenglong Wang, Kaiyang Ye, Yangfan Du, Linfeng Zhang, Yuxin Huang, Tong Xiao, Zhengtao Yu, JingBo Zhu
The 40th Annual AAAI Conference on Artificial Intelligence (AAAI2026, CCF-A)
paper

D$^2$Pruner: Debiased Importance and Structural Diversity for MLLM Token Pruning
Evelyn Zhang, Fufu Yu, Aoqi Wu, Zichen Wen, Ke Yan, Shouhong Ding, Biqing Qi, Linfeng Zhang
The 40th Annual AAAI Conference on Artificial Intelligence (AAAI2026, CCF-A)
paper

ImagebindDC: Compressing Multimodal Data with Imagebind-based Condensation
Yue Min, Shaobo Wang, Jiaze Li, Tianle Niu, Junxin Fan, Yongliang Miao, Lijin Yang, Linfeng Zhang
The 40th Annual AAAI Conference on Artificial Intelligence (AAAI2026, CCF-A)
paper

Prune2Drive: A Plug-and-Play Framework for Accelerating Vision-Language Models in Autonomous Driving
Minhao Xiong, Zichen Wen, Zhuangcheng Gu, Xuyang Liu, Rui Zhang, Hengrui Kang, Jiabing Yang, Junyuan Zhang, Weijia Li, Conghui He, Yafei Wang, Linfeng Zhang
The 40th Annual AAAI Conference on Artificial Intelligence (AAAI2026, CCF-A)
paper

UNSEEN: Enhancing Dataset Pruning from a Generalization Perspective
Furui Xu, Shaobo Wang, Jiajun Zhang, Chenghao Sun, Haixiang Tang, Linfeng Zhang
The 40th Annual AAAI Conference on Artificial Intelligence (AAAI2026, CCF-A)
paper

Training-Free and Hardware-Friendly Acceleration for Diffusion Models via Similarity-based Token Pruning
Evelyn Zhang, Jiayi Tang, Xuefei Ning, Linfeng Zhang
Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI2025, CCF-A, CAAI-A)
paper

Gnothi Seauton: Empowering Faithful Self-Interpretability in Black-Box Models
Shaobo Wang, Hongxuan Tang, Mingyang Wang, Hongrui Zhang, Xuyang Liu, Weiya Li, Xuming Hu, Linfeng Zhang
International Conference on Learning Representation (ICLR2025, CAAI-A)
paper

Accelerating diffusion transformers with token-wise feature caching
Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, Linfeng Zhang
The International Conference on Learning Representations (ICLR2025, CAAI-A)
paper

Dataset Distillation with Neural Characteristic Function: A Minmax Perspective
Shaobo Wang, Yicun Yang, Zhiyuan Liu, Chenghao Sun, Xuming Hu, Conghui He, Linfeng Zhang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR2025, CCF-A, CAAI-A)
paper

ProReflow: Progressive Reflow with Decomposed Velocity
Lei Ke, Haohang Xu, Xuefei Ning, Yu Li, Jiajun Li, Haoling Li, Yuxuan Lin, Dongsheng Jiang, Yujiu Yang, Linfeng Zhang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR2025, CCF-A, CAAI-A)
paper

Decouple-Then-Merge: Finetune Diffusion Models as Multi-Task Learning
Qianli Ma, Xuefei Ning, Dongrui Liu, Li Niu, Linfeng Zhang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR2025, CCF-A, CAAI-A)
paper

Data whisperer: Efficient data selection for task-specific llm fine-tuning via few-shot in-context learning
Shaobo Wang, Ziming Wang, Xiangqi Jin, Jize Wang, Jiajun Zhang, Kaixin Li, Zichen Wen, Zhong Li, Conghui He, Xuming Hu, Linfeng Zhang
ACL2025 (CCF-A)
paper

Token Pruning in Multimodal Large Language Models: Are We Solving the Right Problem?
Zichen Wen, Yifeng Gao, Weijia Li, Conghui He, Linfeng Zhang
ACL2025 findings (CCF-A)
paper

Token Pruning in Multimodal Large Language Models: Are We Solving the Right Problem?
Zichen Wen, Yifeng Gao, Weijia Li, Conghui He, Linfeng Zhang
The 2025 Annual Meeting of the Association for Computational Linguistics (ACL 2025) Findings (CCF-A)
paper

GraphKV: Breaking the Static Selection Paradigm with Graph-Based KV Cache Eviction
Xuelin Li, Xiangqi Jin, Linfeng Zhang
The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
paper

Don't Just Chase" Highlighted Tokens" in MLLMs: Revisiting Visual Holistic Context Retention
Xin Zou, Di Lu, Yizhou Wang, Yibo Yan, Yuanhuiyi Lyu, Xu Zheng, Linfeng Zhang, Xuming Hu
The 2025 Conference on Neural Information Processing Systems (NeurIPS 2025)
paper

Efficient Multi-modal Large Language Models via Progressive Consistency Distillation
Zichen Wen, Shaobo Wang, Yufa Zhou, Junyuan Zhang, Qintong Zhang, Yifeng Gao, Zhaorun Chen, Bin Wang, Weijia Li, Conghui He, Linfeng Zhang
The 2025 Conference on Neural Information Processing Systems (NeurIPS 2025)
paper

EfficientVLA: Training-Free Acceleration and Compression for Vision-Language-Action Models
Yantai Yang, Yuhao Wang, Zichen Wen, Luo Zhongwei, Chang Zou, Zhipeng Zhang, Chuan Wen, Linfeng Zhang
The 2025 Conference on Neural Information Processing Systems (NeurIPS 2025)
paper

Video Compression Commander: Plug-and-Play Inference Acceleration for Video Large Language Models
Xuyang Liu, Yiyu Wang, Junpeng Ma, Linfeng Zhang
The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
paper

Data whisperer: Efficient data selection for task-specific llm fine-tuning via few-shot in-context learning
Shaobo Wang, Xiangqi Jin, Ziming Wang, Jize Wang, Jiajun Zhang, Kaixin Li, Zichen Wen, Zhong Li, Conghui He, Xuming Hu, Linfeng Zhang
The 2025 Annual Meeting of the Association for Computational Linguistics (ACL 2025)
paper

Lazymar: Accelerating masked autoregressive models via feature caching
Feihong Yan, Qingyan Wei, Jiayi Tang, Jiajun Li, Yulin Wang, Xuming Hu, Huiqi Li, Linfeng Zhang
The 2025 IEEE/CVF International Conference on Computer Vision (ICCV 2025)
paper

Eedit: Rethinking the spatial and temporal redundancy for efficient image editing
Zexuan Yan, Yue Ma, Chang Zou, Wenteng Chen, Qifeng Chen, Linfeng Zhang
The 2025 IEEE/CVF International Conference on Computer Vision (ICCV 2025)
paper

From reusing to forecasting: Accelerating diffusion models with taylorseers
Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, Linfeng Zhang
The 2025 IEEE/CVF International Conference on Computer Vision (ICCV 2025)
paper

Led-merging: Mitigating safety-utility conflicts in model merging with location-election-disjoint
Qianli Ma, Dongrui Liu, Qian Chen, Linfeng Zhang, Jing Shao
The 2025 International Conference on Machine Learning (ICML 2025)
paper

Realrag: Retrieval-augmented realistic image generation via self-reflective contrastive learning
Yuanhuiyi Lyu, Xu Zheng, Lutao Jiang, Yibo Yan, Xin Zou, Huiyu Zhou, Linfeng Zhang, Xuming Hu
The 2025 International Conference on Machine Learning (ICML 2025)
paper

Stop looking for important tokens in multimodal language models: Duplication matters more
Zichen Wen, Yifeng Gao, Shaobo Wang, Junyuan Zhang, Qintong Zhang, Weijia Li, Conghui He, Linfeng Zhang
The 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
paper

Unlocking Speech Instruction Data Potential with Query Rewriting
Yonghua Hei, Yibo Yan, Shuliang Liu, Huiyu Zhou, Linfeng Zhang, Xuming Hu
The 2025 Annual Meeting of the Association for Computational Linguistics (ACL 2025) Findings
paper

RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning
Yuanhuiyi Lyu, Xu Zheng, Lutao Jiang, Yibo Yan, Xin Zou, Huiyu Zhou, Linfeng Zhang, Xuming Hu
ICML2025 (CCF-A)
paper

Pointdistiller: structured knowledge distillation towards efficient and compact 3d detection
Linfeng Zhang, Runpei Dong, Huang-Shuo Tai, Kaisheng Ma
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR2023)
paper

A Good Data Augmentation Policy Is Not All You Need: A Multi-Task Learning Perspective
Linfeng Zhang, Kaisheng Ma
IEEE Transactions on Circuits and Systems for Video Technology (IEEE TCSVT), 2023
paper

Tiny Updater: Towards Efficient Neural Network-Driven Software Updating
Linfeng Zhang, Kaisheng Ma
IEEE International Conference on Computer Vision (ICCV2023)
paper

Multi-Frequency Representation with Privilege Information for Video Super-Resolution
Fei Li, Linfeng Zhang, Zikun Liu, Juan Lei, Zhenbo Li
IEEE International Conference on Computer Vision (ICCV2023)
paper

ReKo: Region-aware Knowledge Distillation Towards Efficient Image-to-Image Translation
Linfeng Zhang, Runpei Dong, Xin Chen, Kaisheng Ma
The 34th British Machine Vision Conference 2023 (BMVC2023)
paper

Structured Knowledge Distillation Towards Multi-view 3D Detection
Linfeng Zhang, Yukang Shi, Ke Wang, Hung-shuo Tai, Yuan He, Kaisheng Ma
The 34th British Machine Vision Conference 2023 (BMVC2023)
paper

Revisiting Data Augmentation in Model Compression: An Empirical and Comprehensive Study
Muzhou Yu, Linfeng Zhang, Kaisheng Ma
International Joint Conference on Neural Networks 2023
paper

Wavelet Knowledge Distillation: Towards Efficient Image-to-Image Translation
Linfeng Zhang, Xin Chen, Xiaobing Tu, Pengfei Wan, Ning Xu, Kaisheng Ma
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR2022)
paper

Contrastive Deep Supervision
Linfeng Zhang, Xin Chen, Junbo Zhang, Runpei Dong, Kaisheng Ma
European Conference on Computer Vision (ECCV2022)
paper

Improve Object Detection with Feature-based Knowledge Distillation: Towards Accurate and Efficient Detectors
Linfeng Zhang, Kaisheng Ma
The International Conference on Learning Representations (ICLR2021)
paper

Wavelet J-Net: A Frequency Perceptive on Convolutional Neural Networks
Linfeng Zhang, Xiaoman Zhang, Chenglong Bao, Kaisheng Ma
International Joint Conference on Neural Networks (IJCNN2021)
paper

Auxiliary Training: Towards Accurate and Robust Models
Linfeng Zhang, Muzhou Yu, Tong Chen, Zuoqiang Shi, Chenglong Bao, Kaisheng Ma
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR2020)
paper

Task-Oriented Feature Distillation
Linfeng Zhang, Yukang Shi, Zuoqiang Shi, Kaisheng Ma, Chenglong Bao
Neural Information Processing Systems (NeurIPS2020)
paper

Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation
Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, Kaisheng Ma
IEEE International Conference on Computer Vision (ICCV2019)
paper

SCAN: A Scalable Neural Networks Framework Towards Compact and Efficient Models
Linfeng Zhang, Zhanhong Tan, Jiebo Song, Jingwei Chen, Chenglong Bao, Kaisheng Ma
Neural Information Processing Systems (NeurIPS2019)
paper

Self-Distillation: Towards Efficient and Compact Neural Networks
Linfeng Zhang, Chenglong Bao, Kaisheng Ma
IEEE Transactions of Pattern Analysis and Machine Intelligence (IEEE TPAMI)
paper

Structured Knowledge Distillation Towards Efficient Object Detection
Linfeng Zhang, Kaisheng Ma
IEEE Transactions of Pattern Analysis and Machine Intelligence (IEEE TPAMI)
paper

Follow-Your-Emoji-Faster: Towards Efficient, Fine-Controllable, and Expressive Freestyle Portrait Animation
Yue Ma, Zexuan Yan, Hongyu Liu, Hongfa Wang, Heng Pan, Yingqing He, Junkun Yuan, Ailing Zeng, Chengfei Cai, Heung-Yeung Shum, Zhifeng Li, Wei Liu, Linfeng Zhang, Qifeng Chen
International Journal of Computer Vision (IJCV)
paper

SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, Linfeng Zhang
The 2025 ACM International Conference on Multimedia (ACM MM 2025)
paper

Compute Only 16 Tokens in One Timestep: Accelerating Diffusion Transformers with Cluster-Driven Feature Caching
Zhixin Zheng, Xinyu Wang, Chang Zou, Shaobo Wang, Linfeng Zhang
The 2025 ACM International Conference on Multimedia (ACM MM 2025)
paper

Don't Just Chase" Highlighted Tokens" in MLLMs: Revisiting Visual Holistic Context Retention
Xin Zou, Di Lu, Yizhou Wang, Yibo Yan, Yuanhuiyi Lyu, Xu Zheng, Linfeng Zhang, Xuming Hu
paper

Fine-grained emotion classification of Chinese microblogs based on graph convolution networks
Yuni Lai, Linfeng Zhang, Donghong Han, Rui Zhou, Guoren Wang
World Wide Web Journal (WWW Internet and Web Information Systems)
paper

合作单位

腾讯
阿里
百度
蚂蚁
华为
香港科技大学(广州)
吉德
上海市算法创新研究院
记忆张量
深势科技
中国工商银行
上海人工智能实验室